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Despite becoming increasingly popular in many branches of computational physics, Jaco-
bian-free Newton–Krylov (JFNK) methods have not become the approach of choice in the
solution of the compressible Navier–Stokes equations for turbulent aerodynamic flows.
To a degree, this is related to some subtle aspects of JFNK methods that are not well under-
stood, and, if poorly handled, can lead to inefficient and unreliable performance. These are
described here, along with strategies for addressing them, leading to an efficient JFNK algo-
rithm for turbulent aerodynamic flows applicable to multi-block structured grids and a
one-equation turbulence model. Development of globalization strategies for field-equation
turbulence models represents one of the key contributions of the paper. Numerous exam-
ples of subsonic and transonic flows over single and multi-element airfoils are presented in
order to demonstrate the efficiency and reliability of the algorithm. In addition, a number
of guidelines are presented to aid in diagnosing problems with JFNK algorithms.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Jacobian-free Newton–Krylov (JFNK) methods are becoming increasingly popular in many branches of computational
physics, as described in the survey paper by Knoll and Keyes [1]. They cite numerous examples in fluid dynamics, plasma
physics, reactive flows, flows with phase change, radiation diffusion, radiation hydrodynamics, and geophysical flows. It is
interesting to note, however, that JFNK methods have not become the approach of choice in the numerical solution of the
compressible Navier–Stokes equations in computational fluid dynamics and aerodynamics. Of the papers cited by Knoll
and Keyes in which JFNK methods have been applied to the Euler and compressible Navier–Stokes equations, roughly half
are associated with the efforts of a single group during the mid-1990s (e.g. [2]). Of the remaining papers, only a few represent
continuing research. The major NASA flow solvers typify the algorithms that are most popular in the computational aerody-
namics community. OVERFLOW [3] and CFL3D [4] are both based on implicit approximate factorization methods, TLNS3D [5]
and CART3D [6] utilize multi-stage explicit schemes with multigrid, and FUN3D [7], although it includes a Newton–Krylov
option, is usually run using either a point implicit procedure or an implicit line relaxation scheme [8]. All of these approaches
are more mature than JFNK methods.

The lack of broad acceptance of JFNK methods in the computational fluid dynamics community stems from several fac-
tors. Although the Jacobian matrix is not required, some sort of matrix is typically formed in order to precondition the linear
system. Together with the Krylov subspace, this can lead to higher memory use than some of the more popular methods. In
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addition, formation of this matrix can require additional programming effort, e.g. hand linearization of the discrete residual
equations. Completely matrix-free algorithms avoid these issues by using a solver as a preconditioner [9] but are typically
slower and often inherit the shortcomings of the solver used. Moreover, a JFNK method often involves a number of param-
eters, and there is some effort involved in ensuring that suitable values are chosen for specific problem classes (e.g. [10]).
Poorly chosen parameter values can lead to inefficient and unreliable algorithms. Other algorithms require some parameter
selection as well, but often somewhat fewer, and optimal values for specific problem classes are better established than for
the relatively newer JFNK algorithms. Furthermore, efficient globalization is sometimes difficult to achieve; the highly non-
linear behavior of some field-equation turbulence models can be particularly problematic. Finally, there are some subtle as-
pects of Newton–Krylov methods that are not often reported and can also lead to inefficient and unreliable performance if
handled improperly.

The above issues notwithstanding, JFNK methods also offer many compelling potential advantages in the solution of com-
pressible flows. They can be the most efficient option for extremely stiff problems, where stiffness can be introduced by mul-
tiple scales associated with complex physics, such as chemical reactions [11], or stiff source terms, such as those introduced
by some turbulence models. In addition, the Newton-like convergence properties of JFNK methods are ideal when deep con-
vergence is needed. Consequently, they are very effective in the context of aerodynamic shape optimization, as demon-
strated by Nemec and Zingg [12]. Moreover, their convergence tends to be insensitive to the properties of the mesh. For
example, JFNK methods converge well on meshes with high aspect ratios [13]. Also, high-order methods can lead to reduced
stability bounds for explicit iterative methods; hence JFNK methods can be appropriate in this context [14]. Furthermore,
JFNK methods can be a very efficient means of solving the nonlinear problem that arises at each time step of a time-accurate
implicit algorithm. Isono and Zingg [15] demonstrated that a JFNK algorithm is much more efficient than an approximate
factorization algorithm for implicit time-accurate computations. Finally, the parameters involved in JFNK methods can be
used to advantage to tune the algorithm to be very efficient for specific problem classes or to adjust the algorithm for par-
ticularly difficult problems.

The present paper extends the work of Pueyo and Zingg [13], who developed a JFNK algorithm for the well established
solver ARC2D [16], which is based on the same underlying algorithms as OVERFLOW. Pueyo and Zingg demonstrated that
their Newton–Krylov algorithm converges much more rapidly in terms of computing time than the original approximate fac-
torization algorithm in ARC2D (and OVERFLOW). They plotted convergence histories in terms of equivalent residual evalu-
ations, determined by dividing the total computing time by the computing time needed for a single evaluation of the
residual. In most cases, the residual was reduced by twelve orders of magnitude in fewer than 1000 equivalent residual eval-
uations. Closely related algorithms were applied to two-dimensional unstructured meshes by Blanco and Zingg [17,18],
three-dimensional unstructured meshes by Wong and Zingg [19], three-dimensional inviscid flows on structured meshes
by Nichols and Zingg [20], parallel computations of three-dimensional inviscid flows on structured meshes by Hicken and
Zingg [21] and shape optimization based on steady [12] and unsteady [22] flows. Although the work of Pueyo and Zingg pro-
vided a solid foundation for further development of Newton–Krylov methods for the compressible Reynolds-averaged Na-
vier–Stokes equations, it was restricted in several respects. In particular, their algorithm was limited to two-dimensions,
single-block structured meshes, scalar numerical dissipation, and an algebraic turbulence model.

The original goal of the present research was to extend the Newton–Krylov algorithm of Pueyo and Zingg to multi-block
structured grids, matrix numerical dissipation, and a field-equation turbulence model. In doing so, a number of interesting
and subtle aspects of Newton–Krylov algorithms, which are of general relevance, were encountered and addressed. Hence
the objectives of the present paper are as follows:

� To present an efficient JFNK solver for turbulent aerodynamic flows applicable to multi-block structured grids, matrix
numerical dissipation, and a field-equation turbulence model.

� To describe some subtle aspects of JFNK algorithms which can greatly affect performance and how to address them.
� To present strategies for identifying the causes of problems with JFNK algorithms.

Full details are available in the thesis of Chisholm [23]. Although the present study is performed in the context of a spe-
cific spatial discretization and turbulence model, the ideas presented and conclusions drawn are relevant to JFNK methods in
conjunction with a wide range of spatial schemes and turbulence models.
2. Governing equations, turbulence model, and spatial discretization

The governing equations are the two-dimensional, thin-layer, compressible Navier–Stokes equations written in conser-
vative form [16]. They are nondimensionalized based on free stream variable values following Pulliam [16], where the veloc-
ity scale used is the free stream speed of sound, and the length scale is, for example, the chord length of an airfoil. The
equations are transformed to generalized curvilinear coordinates in order to facilitate the application of finite-difference for-
mulas to the spatial derivatives [16]. The thin-layer approximation neglects all streamwise derivatives in the viscous terms.
Turbulence effects are incorporated through an eddy viscosity term computed by solving the partial differential equation
defining the turbulence model developed by Spalart and Allmaras [24]. The model is in the form of a single convection–dif-
fusion equation with source terms representing production and destruction. The dependent variable of the turbulence mod-
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el, ~m, is related to the kinematic eddy viscosity nondimensionalized by the free stream viscosity. Trip terms are included to
ensure that laminar-turbulent transition occurs at specified locations. The minor modifications proposed by Ashford [25] are
also incorporated in the turbulence model. At a solid surface, standard no-slip boundary conditions are applied. Adiabatic
walls are assumed, i.e. zero normal temperature gradient, and a zero normal pressure gradient is also enforced at solid
boundaries. At far-field boundaries, Riemann invariants are used to prescribe the boundary conditions, and a circulation cor-
rection is included to reduce the effect of artificially truncating the flow domain [16]. At a solid surface, the turbulence var-
iable, ~m, is set to zero. At a far-field inflow boundary, it is set to 0.01.

The inviscid and viscous flux derivatives are approximated using second-order centered difference formulas applied in
the uniform computational space. First-order upwind differencing is used for the convective terms in the turbulence model
equation. Numerical dissipation is added to the inviscid flux discretization through either the scalar dissipation terms de-
scribed by Pulliam [16] or the matrix dissipation approach of Swanson and Turkel [26]. In the scalar model, the matrix used
in the matrix model is replaced by the spectral radius of the flux Jacobian. Hence the scalar model is more dissipative. This is
most noticeable in boundary layers, where the matrix model is more accurate for a given grid density. Both dissipation mod-
els include a combination of first-order, second-difference dissipation and third-order, fourth-difference dissipation. The
amount of first-order dissipation is controlled by a pressure switch designed to sense shock waves. The pressure switch in-
cludes both the absolute value and maximum functions, and is therefore not strictly differentiable. Both dissipation models
also involve the absolute value function. The fourth-difference operator requires a five-point stencil in each coordinate direc-
tion. The coefficient of the fourth-difference dissipation is set to 0.02 for all cases presented here. The second-difference dis-
sipation coefficient is zero for subsonic flows and unity for transonic flows. The matrix dissipation model includes two
parameters to avoid zero eigenvalues. The lower bound on the magnitude of the convective eigenvalues is set equal to
0.025 times the spectral radius of the relevant flux Jacobian. The lower bound on the sound speed eigenvalues is set to
0.025 times the spectral radius for subsonic flows and to 0.25 times the spectral radius for transonic flows. These are typical
parameter values for these schemes. A complete description of the spatial discretization can be found in Zingg et al. [27]. The
accuracy of this spatial discretization has been studied extensively (e.g. [27]), and the grids used here are such that numerical
errors are small and the numerical solutions compare well with experimental data (e.g. [28,29]).
3. Algorithm

3.1. Solving the nonlinear system – the outer iterations

After discretizing in space, the governing partial differential equations are reduced to ordinary differential equations in
the form
dQ
dt
¼ RðQÞ: ð1Þ
Here Q is the vector of conservative variables, including the turbulence variable, at each node of the grid, including the
boundary nodes. The vector R includes the discrete residual at each interior node plus the discretized boundary conditions.
The equations corresponding to the boundary conditions are included in this system, but for these equations the time deriv-
ative is zero, i.e. they are algebraic equations, not differential equations. As a result of the transformation to curvilinear coor-
dinates, the local conservative variables are multiplied by the inverse of the Jacobian of the transformation, J�1, but the
turbulence parameter is not. The inverse Jacobian is closely related to the cell area, and hence can vary widely throughout
the grid. Similarly, the mass, momentum, and energy equations are multiplied by J�1 during the transformation, but the tur-
bulence model equation is not, as it is solved in nonconservative form. The boundary conditions are also not scaled by J�1. As
a result of the presence or absence of J�1, there is significant variation in the magnitudes of the entries of both Q and R. For
steady flows we seek the solution to the nonlinear algebraic system of equations
RðQÞ ¼ 0; ð2Þ
but we retain the time derivative term for use in globalizing the algorithm.
Applying the implicit Euler time-marching method with local time linearization to Eq. (1), one obtains, for the nth

iteration,
An �
I

Dt

� �
DQ n ¼ �RðQ nÞ; ð3Þ
where A is the Jacobian matrix of RðQÞ given by
A ¼ @RðQÞ
@Q

: ð4Þ
The term I
Dt is a simplified notation in that this term is zero for the boundary conditions, and the time step can vary spatially.

As Dt !1, Newton’s method is recovered:
AnDQ n ¼ �RðQ nÞ: ð5Þ
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At each iteration, the linear system given by either Eq. (3) or Eq. (5) must be solved. With a fixed time step, the implicit Euler
method converges linearly, while Newton’s method converges quadratically if certain conditions are satisfied.

In an inexact-Newton method, Eq. (5) is not solved exactly. Such a method can be written as
kRðQnÞ þ AnDQ nk2 6 gnkRðQ nÞk2; ð6Þ
where the parameter gn 2 ½0;1Þ controls the degree of convergence of the linear system at each iteration. It is convenient to
use the L2 norm, since it may be provided by the linear iterative solver at no extra cost. Superlinear and even quadratic con-
vergence can be obtained by a properly chosen sequence of values of gn [30]. However, such a sequence is typically not opti-
mal in terms of minimizing computing time. It is important to avoid oversolving the linear system, and a constant value of gn

equal to 0.1 is often the most efficient choice.
Since Newton’s method is not globally convergent, a globalization strategy is needed to bring the initial iterate into the

radius of convergence of Newton’s method. Knoll and Keyes [1] discuss several strategies, including line search and trust
region methods, pseudo-transient continuation, and continuation methods. Since the nonlinear algebraic system of equa-
tions of interest here is the steady solution of a system of ordinary differential equations, we consider only pseudo-transient
continuation. This requires the choice of a time step sequence in Eq. (3), where Dt is replaced by Dtn. Since we are not con-
cerned with a physically relevant transient, Dtn can vary spatially and can also vary among equations. For example, the time
step in the turbulence model equation need not be equal to that in the mean-flow equations. The time step strategy is further
discussed in Section 4.
3.2. Solving the linear system – the inner iterations

The linear systems arising from Eqs. (3) and (5) are typically large, sparse, nonsymmetric, and ill-conditioned. For such
problems, the appropriate iterative method is dependent on several factors, including the properties of the matrix and
the degree of convergence needed. Here we consider only the generalized minimal residual method (GMRES) [31] precon-
ditioned using incomplete lower–upper preconditioning with some fill, based on a level of fill strategy (ILU(p)) [32]. GMRES
forms an orthonormal basis from the Krylov subspace using Arnoldi’s method and finds the iterate that minimizes the resid-
ual using this basis. In order to limit the memory use associated with the Krylov vectors, it is common to restart GMRES after
a set number of iterations. This can be highly detrimental to convergence and hence is not recommended unless absolutely
necessary. For the loose tolerance used here ðgn ¼ 0:1Þ, the size of the Krylov subspace is rarely excessive. For the examples
shown later, we have limited the number of GMRES iterations and hence the subspace size to 30. If this limit is reached,
rather than restarting GMRES, we terminate and move to the next outer iteration. This limit was reached only for the com-
putation of the three-element configuration. For the single-element airfoils, the average number of inner iterations per outer
iteration is roughly 13 with a maximum of 16. For the two-element configuration, the average is 22 and the maximum is 28.

GMRES requires only matrix–vector products. Hence the Jacobian matrix need be neither explicitly formed nor stored.
Instead, the product of the Jacobian and an arbitrary vector v can be approximated by a first-order forward difference
expression:
Av � RðQ þ �vÞ � RðQÞ
�

; ð7Þ
where � is a small scalar parameter. It is immediately evident that the calculation can be prone to round-off error in the addi-
tion and the subtraction if � is too small. Conversely, if � is too large, the error in the finite-difference approximation can
become excessive. As a result, choosing a value of � is a tricky balance between round-off and truncation error. If the vari-
ables or equations are not well scaled, then finding a suitable value of � can be particularly challenging, if not impossible.
Occasionally it can be advantageous to utilize a second-order finite-difference expression, but this should generally be
avoided due to the extra cost of the second residual function evaluation. The subject of scaling and the choice of � is further
discussed in Section 4.

It is often incorrectly assumed that the Jacobian-free matrix–vector products are inherently advantageous in terms of
computing time. If a large number of inner iterations is needed, then it can actually be faster to form the Jacobian matrix
and apply it repeatedly rather than performing repeated evaluations of the residual vector. However, the Jacobian-free ap-
proach is usually favored as a result of memory considerations. For the applications presented here, the number of inner iter-
ations is typically well below the threshold above which the Jacobian-free approach becomes less efficient.

The ordering of the boundary condition equations at a given boundary node is arbitrary. Since it is typically beneficial to
avoid small pivots, the boundary equations should be reordered to maximize the diagonal elements. This operation needs to
be performed at the first iteration only.
3.3. Preconditioning

The rate of convergence of a Krylov method such as GMRES is strongly dependent on the conditioning of the matrix. The
Jacobian matrices resulting from the discretized Navier–Stokes equations are typically highly ill-conditioned, such that
GMRES will converge very poorly unless the system is preconditioned. For example, right preconditioning can be written as
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ðAM�1ÞðMxÞ ¼ b: ð8Þ
Thus, the convergence of GMRES depends on the conditioning of the matrix AM�1 rather than A, and M should be chosen to
cluster the eigenvalues of AM�1. Therefore, we would like M�1 to be as close to A�1 as possible. This can be accomplished by
forming an approximation to the inverse of the Jacobian matrix or by applying one or more iterations of an iterative method,
such as GMRES (leading to the nested GMRES method [33]) or a relaxation method. Although these two approaches are clo-
sely related [34], the latter can be implemented such that it is fully matrix-free, which greatly reduces memory use, but
necessitates the use of flexible GMRES [35], which somewhat increases memory use. Although this approach can lead to
good performance in some contexts [35], we concentrate here on a specific approximate inverse, the incomplete lower–
upper (ILU) factorization. For further discussion of parallel, multigrid, and physics-based preconditioners, see Knoll and
Keyes [1]. We note in particular that success has been achieved using multigrid preconditioning, and this may be added
to our algorithm in future.

In an ILU factorization, an approximation to the LU factorization of a matrix is obtained by dropping elements according
to some rule as the factorization proceeds. In the simplest case, known as ILU(0), only elements that have a corresponding
entry in the original matrix are kept. Since such a preconditioner is often inadequate, strategies have been developed to
introduce additional fill into the incomplete factorization, including a level-of-fill strategy, ILU(p), and a threshold strategy,
ILUTðP; sÞ [32]. In the level-of-fill approach, each element that is introduced in the factorization is assigned a level. If it has a
corresponding entry in the original matrix, then it is assigned a level of zero. Otherwise, the level assigned is the sum of the
levels of the two elements that contributed to the formation of the new element, plus one. If the new element’s level of fill
exceeds p, then it is dropped. This approach is based solely on the graph of the matrix and thus can be precomputed. In the
threshold strategy, ILUTðP; sÞ, elements are dropped if they are smaller than s, and at most the P largest elements are kept in
each row. Although the ILUTðP; sÞ strategy allows more precise control, it is much more expensive to form, and both Pueyo
and Zingg [13] and Wong and Zingg [19] have demonstrated that the ILU(p) strategy is much more efficient in the current
context.

The Jacobian matrix is naturally organized into blocks, which are 5 � 5 in the present case. Some blocks contain a mix of
zero and nonzero entries. This can prove problematic for a scalar ILU algorithm. One solution, called BFILU [36,13], is to as-
sign a level of fill of zero to the zero entries within such a block, such that nonzero entries are permitted in these locations in
the ILU factorization. The method used here, BILU, treats each block as a single entry. Hence division operators become block
matrix inversions.

Given that the Jacobian-free approach avoids the need to form and store the Jacobian matrix, it is natural to consider bas-
ing the preconditioner on a reduced-storage approximate Jacobian. The matrix–vector products needed by the GMRES algo-
rithm with right preconditioning can then be written as
AM�1
1 v � RðQ þ �M�1

1 vÞ � RðQÞ
�

; ð9Þ
where M�1
1 is a preconditioner based on an approximate Jacobian. With an upwind spatial discretization, the approximate

Jacobian is normally constructed from a first-order upwind discretization, which involves nearest neighbours only. With
the present spatial discretization, next to nearest neighbours are introduced solely as a result of the fourth-difference arti-
ficial dissipation. Therefore, a reduced-storage Jacobian can be constructed by neglecting fourth-difference dissipation and
adding additional second-difference dissipation to compensate. Pueyo and Zingg [13] introduced the following formula:
�M
2 ¼ �R

2 þ r�R
4; ð10Þ
where �M
2 is the coefficient of second-difference dissipation in the approximate Jacobian used to form the ILU preconditioner,

�R
2 is the coefficient of second-difference dissipation in the residual, �R

4 is the coefficient of fourth-difference dissipation in the
residual, and r is a parameter. A value of r ¼ 5 is typically optimal with scalar dissipation, while r ¼ 10 is preferred with
matrix dissipation. Nonlocal terms, such as the circulation correction, are also excluded from the approximate Jacobian.
Numerical experiments demonstrate that the absence of these nonlocal terms from the approximate Jacobian used to form
the preconditioner does not significantly affect convergence.

Although the original motivation for using an approximate Jacobian matrix to form the ILU preconditioner was memory
savings, Pueyo and Zingg [13] showed that this also leads to a much more effective preconditioner. This has also been ob-
served when a first-order upwind discretization is used in the formation of the preconditioner [1]. It is important to recog-
nize that we are trying to minimize the difference AM�1 � I rather than the difference A�M. The former difference can be
very large if small pivots are encountered during the incomplete factorization, or the triangular solves are unstable [37]. The
approximate Jacobian matrix has larger diagonal entries and consequently avoids these difficulties, which can greatly reduce
the effectiveness of the preconditioner.

Returning to Eq. (9), we see that in ILU-preconditioned Jacobian-free GMRES a matrix–vector product is formed in the
following manner. First M�1

1 v is computed by a forward sweep followed by a back sweep using the ILU factorization. Then
the product AM�1

1 v is computed based on Eq. (9). Hence the primary costs of the inexact solution of the linear problem at
each outer iteration include the initial formation of the ILU factorization plus two sweeps and a residual evaluation per
GMRES iteration.
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The ordering of the unknowns can significantly affect the performance of ILU preconditioning [38]. Among the orderings
investigated by Pueyo and Zingg [13], they found the reverse Cuthill–McKee (RCM) ordering [39] to be the most effective.
Hence it is the only ordering considered here. However, this issue remains open, and further orderings should be examined
in this context. Pueyo and Zingg found that the initial ordering of the unknowns before applying the RCM reordering is also
important. To understand why, we briefly review the RCM algorithm. All of the nodes are divided into a number of level sets
ls(s) s ¼ 0; . . . M. The degree of a node is the number of neighbours it has in the graph of the matrix. The algorithm can be
described as follows:

(1) Set m ¼ 0. Choose a root node of minimum degree, which becomes the sole member of ls(0). In our case, all nodes of
minimum degree are located on either the airfoil surface or the far-field boundary.

(2) For each node in ls(m), add all unordered neighbours to ls(m + 1) in order of increasing degree.
(3) Set m ¼ mþ 1, and if unordered nodes remain, return to 2.
(4) Place the nodes in the following order: the entry in ls(0), followed by the entries (in order) in ls(1), followed by the

entries in ls(2), etc.
(5) Reverse the order.

This algorithm operates by locally minimizing the average bandwidth of a wavefront, where a wavefront is the set of
nodes in a level set. As presented, the algorithm is not fully defined. First, there may be several nodes of minimum degree,
so there is some flexibility in the choice of the root node. Second, when neighbours of a node are added to the next level set,
some may be of equal degree, and again there is an ambiguity. Typically, the initial ordering of the nodes is used to fully
define the algorithm, and this explains its influence.

In the absence of reliable theory to guide the reordering, we have performed a vast number of experiments with different
root nodes and strategies for choosing between two or more nodes of equal degree, examining both the estimated condition
number of M�1 and the computing time for convergence. Based on the data generated, the following observations can be made:

� The convergence time is highly dependent on the root node choice, especially for turbulent flows; many choices can lead
to nonconvergence.

� Choosing a root node on the far-field boundary is preferred over the airfoil surface.
� Choosing a root node on the downstream boundary is advantageous.

As a result, we always choose a root node on the downstream boundary (recall that the ordering is reversed, so the root
node becomes the last node in the final ordering). Furthermore, consistent with this idea, when a choice must be made be-
tween two or more nodes of equal degree, the node that is downwind is chosen first. This consistently yields a significantly
superior preconditioner.
4. Algorithm parameters

Although a JFNK algorithm is conceptually straightforward, there are a number of parameters that must be properly spec-
ified and details to which attention must be paid in order to achieve an efficient and robust solver. Our strategy is to find a set
of parameters that is appropriate for a wide range of flow problems, rather than tuning the parameters for specific problems.
We accept parameter variation, as long as it can be specified a priori. For example, it is prudent to develop different param-
eters for laminar and turbulent flows. This is due to the strong effect of the turbulence model, which is significantly less sta-
ble than the mean-flow equations. The turbulence model has a number of components that are highly nonlinear, especially
in the trip terms, which are a challenge for Newton’s method. Moreover, there is often a large difference in the magnitude of
the residuals and Jacobian matrix entries between the turbulence model and mean-flow equations, which presents a chal-
lenge for the linear solver. The measures introduced to address the difficulties arising from the turbulence model represent a
key contribution of this paper.

The optimal parameters have been selected based on comprehensive testing of the algorithm on a range of flow problems,
including subsonic and transonic, inviscid and turbulent flows over single- and multi-element airfoils. The grids used vary
from 12,000 nodes for the inviscid single-element problems to 72,000 nodes for the turbulent multi-element problems, with
maximum cell aspect ratios ranging from 1900 to over 2 million. Multi-block grids are used for the multi-element
configurations.

4.1. Equation and variable scaling

Row and column scaling can be applied to the linear system in the following manner:
SrAScS�1
c x ¼ Srb; ð11Þ
where Sr and Sc are diagonal matrices. Sr scales the residual vector, and Sc scales the solution vector. The reasons to use these
scalings are primarily related to the fact that the linear system is solved inexactly. For example, as a result of the inherent
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scaling of the Navier–Stokes equations by the inverse of the Jacobian of the coordinate transformation, the residual at nodes
far from the body, where J�1 is large, is typically severals orders of magnitude larger than the residual at nodes near the body,
where J�1 is small. To satisfy the requirement that the linear residual decrease by one order of magnitude, only the residual
at nodes far from the body needs to be reduced. The residual at nodes near the body can increase, with potentially disastrous
consequences for convergence of the nonlinear iterations. Similarly, the residual of the turbulence model equation can be
orders of magnitude larger than that of the mean-flow equations. Again, the required reduction in the residual of the linear
problem can be achieved by reducing only the residual associated with the turbulence model, while the mean-flow residual
can increase, leading to nonconvergence of the nonlinear iterations.

The entries in the Jacobian matrix are also strongly affected by poor scaling of variables and equations. Fig. 1 shows a
typical unscaled diagonal block in the near wake of an airfoil, where J�1 ¼ 10�5. The off-diagonal entries for the turbulence
model (row 5, columns 1–4) are many orders of magnitude higher than the off-diagonal entries of the mean-flow equations,
especially those resulting from the derivative with respect to the turbulence variable (rows 2–4, column 5). This disparity
results in part from the scaling of the mean-flow variables and equations by J�1. Note that the diagonal elements are close
in magnitude.

A third area where a poor scaling of variables and equations can be detrimental is in the evolution of the time step during
pseudo-transient continuation. Most such continuation methods determine the time step based on the norm of the residual.
If the residual norm is dominated by a single component, such as the turbulence model, then the time step evolution will be
appropriate for that component only and can be too large or too small for the under-represented component, leading to sub-
optimal convergence, or divergence.

In the present solver, scaling problems have the following four primary sources:

� The mean-flow equations and variables have a node-by-node scaling by the inverse of the Jacobian of the coordinate
transformation.

� The turbulence model equation and variables have no inherent geometric scaling.
� The turbulence model variable ranges up to roughly 1000, while the mean-flow variables typically do not exceed two.
� Local differences may arise, for example, near transition trip points.

In order to address the problems caused by poor scaling of variables and equations, we will consider two categories of
scaling: inherent scaling and auto-scaling. The former is used to address ab initio scaling problems, such as the inherent scal-
ing differences between our turbulence model and mean-flow variables and equations resulting from the presence or ab-
sence of J�1 scaling. This is equivalent to rewriting the equations in a different form. Auto-scaling is performed each
iteration to address discrepancies between the residual norms of the various equations. We consider only scalings where
the equation scaling is the same as the variable scaling, so that Sr ¼ S�1

c . This ensures that the eigenvalues and diagonal ele-
ments of the Jacobian matrix are unchanged.

After experimenting with several different scaling strategies, we have found the following approach to be effective. The
mean-flow equations and variables are multiplied by J; this eliminates the disparity caused by the geometric scaling. The
turbulence model variable and equation are multiplied by 10�3 to normalize with respect to the maximum value of the tur-
bulence variable. This is analogous to nondimensionalizing with respect to eddy viscosity rather than viscosity. Auto-scaling
is then performed to bring the maximum difference between the mean-flow and turbulence model residual norms to within
an order of magnitude. The reference time step evaluation for the pseudo-transient continuation (Section 4.2) is calculated
based on the residual norm after the inherent scaling is applied, but before the auto-scaling is applied. This combination of
inherent scaling and auto-scaling reduces the disparities in the elements of the Jacobian blocks, ensures that the linear resid-
uals of the mean-flow and turbulence equations must both be reduced during the inexact linear solve, and ensures that the
time step evolution is dependent on both sets of equations. Overall, this scaling strategy leads to some improvement in the
speed of the algorithm, but more importantly, greatly increases its robustness.

4.2. Globalization: pseudo-transient continuation

The pseudo-transient continuation strategy used to globalize the inexact-Newton method is based on the implicit Euler
method introduced in Section 3.1. Once the time step in Eq. (3) reaches roughly 104, the method is effectively an inexact-
Fig. 1. Typical unscaled diagonal block.
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Newton method. The goal of the pseudo-transient continuation is to reach this stage as efficiently and reliably as possible.
Since time accuracy is not needed, each node and each equation can have an individual time step that changes at each iter-
ation. To simplify this situation, we use the following form for the time step:
Dt ¼ Dtref � Dtloc: ð12Þ
The reference time step, Dtref , evolves as the iterations progress; the same value is used for all nodes. The local time step Dtloc

varies at each node, and potentially for each equation. The turbulence model requires an extra degree of stabilization to pre-
vent negative values of the turbulence quantity from occurring. A special local time step formulation is used to accomplish
this; this is presented in Section 4.3.

The norm of the residual provides a measure of the degree of convergence of the algorithm. Consequently, Dtref should
increase as the residual norm decreases, suggesting the following formula
Dtref ¼maxða � kRk�b
2 ;DtminÞ: ð13Þ
The parameter Dtmin is introduced to keep the reference time step from becoming too small. Without this parameter, a spike
in the residual convergence history can lead to a very small time step, and a large number of iterations is then required to
recover. Choosing b ¼ 1 provides a rapid increase in the time step while maintaining stability. The parameters a and Dtmin are
dependent on the nature of the flow. Conservative choices are as follows: a ¼ 100; Dtmin ¼ 100 for subsonic flows, Dtmin ¼ 10
for transonic flows. With this choice of a, the reference time step reaches 104 when the residual norm is 10�3. For many flow
problems, faster convergence can be obtained with higher values of Dtmin and a, but we use the above values to provide a
robust algorithm that does not require parameter tuning. The parameters are chosen to minimize the computing time,
not the number of nonlinear iterations, needed to achieve convergence. During the period when the time step is relatively
small, the linear problem is easier to solve due to the increased magnitude of the diagonal elements, so the number of inner
(GMRES) iterations per outer iteration is reduced.

There are some subtleties to be considered in using the above Dtref formulation. First, recall that the residual has been
scaled such that inherent scaling differences are removed. This is important, as it ensures that all components contribute
to the determination of the time step. Second, since our initial condition is a uniform flow, the residual in the interior of
the domain is zero at the first iteration, and the sole contribution to the residual is from the boundary conditions. If the resid-
ual from the boundary conditions is small, then this will lead to a large time step for the first few iterations until the residual
in the interior is sufficiently high to drive Eq. (13). This is undesirable because an initially large time step can be destabilizing,
and furthermore, we do not want the boundary conditions to drive the time step, since they are not directly affected by the
time step. In our solver, the initial boundary condition residuals are large enough to force Dtref ¼ Dtmin for the initial time
steps, so this problem does not appear. However, it is an important issue to be aware of, in case measures need to be taken
to avoid having a time step that is too large initially. Problems can also arise if Dtref increases too rapidly from one iteration to
the next. We have thus introduced a safeguard that limits the maximum increase in Dtref to one order of magnitude. While
this rarely takes effect, it occasionally prevents the solver from diverging.

Note that Eq. (13) is only effective when there is a clear connection between the residual and the degree of nonlinearity.
Due to the high nonlinearity in the turbulence model, especially the trip terms to fix the transition point, this is not always
the case. We have found that adjusting the parameter a is unsuccessful in addressing this situation. If a is too large, diver-
gence will occur when the reference time step first ramps up. If a is too small, a long plateau occurs in the convergence his-
tory. Therefore, the following measure has been introduced to address this situation. If one or more nodes have been flagged
to use a restricted time step based in the turbulence model stabilization described in Section 4.3, then we choose
Dtref ¼ Dtmin. This measure has little effect on many flow problems, but when the trip terms are particularly problematic,
it can significantly speed up convergence.

Finally, we consider the local time step, Dtloc . Following Pulliam [16], we use the following formula to provide a spatially
varying time step:
Dtloc ¼
1

1þ
ffiffi
J

p : ð14Þ
This formula decreases the time step for small cells, consistent with maintaining a roughly constant Courant number, while
recognizing that the grid spacings vary much more than the wave speeds. This assumes convection-dominated flow, and,
although the turbulence model is less convection-dominated than the mean-flow, we have found this formula to be effective
when applied to the turbulence model equation as well.

Grid sequencing can also be used to advantage during the pseudo-transient continuation phase. Beginning with a coarse
grid, a series of grids is used to provide a good initial guess on the finest grid [16]. This has the advantage of initiating the
solution on the fine grid much closer to the region of convergence of Newton’s method, thus reducing the time spent in the
continuation phase. A larger Dtmin and a more aggressive time step sequence can be used on the fine grid, while more con-
servative values are used on the coarse grids, where the iterations are quicker. We use a three-grid sequence, with each
coarse grid being formed by removing every second grid line from its parent grid. Scalar dissipation is used on the coarse
grids. The transition to the next grid level is initiated when the residual norm drops below 10�4. The use of grid sequencing
is not essential but speeds up convergence and improves robustness.
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4.3. Turbulence model stabilization

The turbulence model introduces a number of challenges. First, the Spalart–Allmaras model is highly nonlinear, especially
the production and trip terms, so efficient globalization is essential. Second, the model becomes unstable for negative ~m, so it
is critical to ensure that ~m remain positive.

A number of measures can help to avoid difficulties in the early iterations. The turbulence model is essentially meaning-
less unless the mean-flow is somewhat physically realistic. Therefore, we initially perform a few iterations of the mean-flow
equations without the turbulence model equation in order to establish some shear near the body. In addition, the turbulence
model is seeded with a low level of eddy viscosity ð~m ¼ 10Þ in regions downstream of the trip points. The shear established
near the body is sufficient to maintain the eddy viscosity where appropriate, while it rapidly convects out of regions that lack
enough shear to sustain a significant level of eddy viscosity.

In order to ensure positive values of the turbulence quantity, Spalart and Allmaras [24] use a first-order upwind discret-
ization for the convective terms in the turbulence model and modify the turbulence model Jacobian matrix such that it is an
M-matrix. While this approach is effective, it is difficult to implement in a Jacobian-free manner and is not compatible with
Newton-like convergence. Therefore, we retain the first-order discretization of the convective terms, but rather than mod-
ifying the Jacobian matrix, we use a local time step for the turbulence model equation in order to maintain positivity of ~m.

If we neglect off-diagonal terms, applying the implicit Euler method to the turbulence model equation results in
ðDt�1
~m � JDÞD~m ¼ R~m; ð15Þ
where Dt~m is the local turbulence model time step, JD is the diagonal element of the Jacobian matrix for the turbulence model
equation, and R~m is the residual of the turbulence model equation. Note that JD < 0. We wish to limit the update as follows:
jD~mj 6 jrj �maxð~m;1Þ; ð16Þ
where jrj is a specified ratio that can range from 0.4 to 0.8. Choosing jrj ¼ 1 would keep the updated ~m positive in the uncou-
pled case, but in practice a smaller value is preferable. The maximum function ensures that values of ~m very close to zero can
be increased in a reasonable time, i.e. it prevents the time step from becoming too small. While this allows small negative
values, these are clipped to zero after each update; such clipping is not needed during the later stages of convergence, so the
steady solution is unaffected. Rearranging Eqs. (15) and (16), we can find an approximate maximum allowable time step:
Dt~m ¼
R~m

r �maxð~m;1Þ þ JD

� ��1

; ð17Þ
where D~m, and therefore r, must have the same sign as R~m. This moves the update in the direction of the residual as required.
Note that the reference time step is held to Dtmin if the time step calculated from Eq. (17) is less than that calculated from

Eq. (12) anywhere in the grid. This normally does not occur during the late stages of convergence, so that Newton-like con-
vergence can be achieved. The use of a restricted time step for the turbulence model in this manner has proven to be a critical
element in achieving a robust algorithm.

In other solvers, for example solvers using unstructured grids, the need for clipping may persist, both degrading conver-
gence and affecting the steady solution. Under these circumstances, a more sophisticated procedure involving a modification
to the source terms in the turbulence model is needed when ~m < 0 [23].

We conclude this section with an additional measure added when the transition trip terms are used in the turbulence
model. These terms are destabilizing and highly nonlinear, but it is important to include them in order to ensure that tran-
sition occurs where expected. Following the suggestion of Spalart and Allmaras [24], we use a limited number of nodes with-
in a reasonable distance of the trip for the calculation of the trip function. These additional coupling terms are not included in
the approximate Jacobian used to form the preconditioner. Changes in the turbulence variable near the trip can be large en-
ough to destabilize the solution. In order to damp this effect, we reduce the time step at nodes where the trip terms are
highly sensitive to the velocity components. Nodes where the sum of the absolute values of the partial derivatives of the trip
terms with respect to the velocity components exceed 105 have the time step reduced according to the following:
Dttrip
ref ¼

Dtref Dtref < 10;
10 10 < Dtref < 1000;
Dtref

100 Dtref > 1000:

8><
>: ð18Þ
This measure is active only during the early stages of convergence during which the location of transition is established.

4.4. Preconditioner

Preconditioning is achieved using an ILU(p) factorization of an approximation to the Jacobian matrix. Parameters intro-
duced include r, which affects the approximate Jacobian and was discussed in Section 3.3, and the level of fill, p. Increasing p
reduces the number of inner iterations by improving the effectiveness of the preconditioner. However, the cost of forming
and applying the preconditioner is increased, as are the memory requirements, so there is a trade-off. In computations of
two-dimensional flows, levels of fill between 2 and 4 are typically optimal. Lower values are preferred in three-dimensions
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[19,20]. In the present work, a value of p equal to 4 is used in all cases. The effectiveness of the ILU(p) factorization is also
influenced by the reordering used, and thus the choice of the root node in the RCM ordering is very important, as described in
Section 3.3.

4.5. Linear system solution

Two subtle difficulties can arise in solving the linear system. First, the reduction in the largest component of the residual
can be sufficient to meet the linear convergence tolerance even though some components of the residual have not decreased
and may even have increased. This can lead to divergence of the nonlinear iterations. The scalings discussed previously are
designed to alleviate this difficulty. In addition, we perform a minimum of five linear iterations at each nonlinear iteration.
The number of linear iterations rarely drops below five, so this is rarely enforced. When it is enforced, it is usually needed, as
it indicates that the residual reduction is probably misleading in that not all components have been uniformly reduced.

The second problem that arises in the linear system solution is associated with the Jacobian-free matrix–vector product,
Eq. (7). As described in Section 3.2, the parameter � must be carefully chosen such that both round-off and truncation error
are sufficiently small. It is common to choose � based on the following formula:
� ¼
ffiffiffi
d
p

kvk2
; ð19Þ
where most authors suggest using d equal to the value of machine zero. If the entries in v vary greatly in magnitude, then
kvk2 will be a good representative value for the larger entries, but will be too large for the smaller entries. This leads to a
value of � that is too small for the smaller entries, thus producing round-off error in those components of Q þ �v . If the var-
iation in the magnitudes of the entries in v is too great, then it can be impossible to find a value of � that meets the competing
demands of round-off and truncation error. A similar argument applies to the difference of the two residuals in Eq. (7). If the
components of the residual vector vary widely in magnitude, then there may be no choice of � that is suitable. In both cases,
large round-off errors can result from the small entries.

Clearly, the scalings described previously help to address this problem, which we call Jacobian-free breakdown, but they
are not sufficient to eliminate it completely. This issue is particularly pernicious because it can manifest itself in the nonlin-
ear iterations. The linear solver may converge, but to the solution of a different linear system. Alternatively, an increase in the
number of inner iterations may be seen, resulting from a mismatch between the erroneous linear problem being solved and
the preconditioner. One means of reducing the likelihood of Jacobian-free breakdown caused by round-off error is to use a
higher-order finite-difference approximation in Eq. (7), which reduces the truncation error for a given value of �, thereby
permitting the use of larger values of �, which in turn reduces the round-off error. This is, however, an expensive cure. Since
we have found round-off error to be a more significant problem than truncation error, we instead address this issue by using
a larger value of � than that obtained with d equal to machine zero. With d ¼ 10�10, Jacobian-free breakdowns are essentially
eliminated. Alternatively, the norm of v can be divided by the square root of the number of nodes (i.e. a root-mean-square
norm), and d can be left at machine zero.

5. Algorithm performance

Before presenting some sample results to demonstrate the performance of the JFNK algorithm presented, we will review
the algorithm parameters used to obtain these results. As discussed previously, the large number of parameters in Newton–
Krylov algorithms is often seen as a negative characteristic. Therefore, we stress that the parameters have not been varied for
the results presented here. The following are the parameters used to obtain all of the results presented in this section:

� The linear system residual is reduced by a factor of 10, i.e. gn ¼ 0:1 for all n in Eq. (6), with a minimum of five iterations.
� An ILU(p) preconditioner is used with p ¼ 4, as described in Section 3.3. It is based on the approximate Jacobian, with

r ¼ 10:0 in Eq. (10), since all results shown use matrix dissipation. The preconditioner is calculated before every outer
iteration.

� Before applying the preconditioner, the system is reordered using the reverse Cuthill–McKee method, with the root node
chosen on the downstream boundary, as discussed in Section 3.3.

� The equations are scaled as described in Section 4.1, including both inherent scaling and auto-scaling.
� The parameters used in the reference time step equation (Eq. (13)) are:
� a ¼ 100.
� Dtmin ¼ 100.
� b ¼ 1.
� In Eq. (17), jrj ¼ 0:5.
� Matrix–vector products are calculated with the Jacobian-free approach. The parameter used in Eq. (19) is d ¼ 10�10.
� Grid sequencing is used, as described in Section 4.2. Three grids are used, with a ¼ 10 on the coarsest grid and scalar dis-

sipation on both coarse grids. The switch from coarse grid to the next finer grid is made when the residual reaches 10�4.
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In order to provide a reference that may be useful to a number of readers, the convergence results of the Newton–Krylov
(NK) algorithm are compared with those of the well-known approximate factorization (AF) algorithm [16]. The latter algo-
rithm was run as efficiently as possible, with standard parameters and grid sequencing. The spatial discretizations and hence
the residual evaluations for the two solvers are precisely the same. Therefore, the converged steady solutions are identical,
and exactly the same computing time is required for a residual evaluation.

Convergence histories are presented in terms of both the residual norm and the convergence of the lift coefficient, la-
belled ‘‘Cl error”, which is the difference between the current lift coefficient and the final converged lift coefficient. The lift
coefficient is the lift force per unit depth nondimensionalized by dividing by the dynamic pressure times the airfoil chord.
The lift coefficient error is very easy to interpret, since it shows the number of decimal places to which the lift coefficient has
converged. Moreover, in some cases with the approximate factorization algorithm, the residual fails to converge at a very
small number of nodes, but the solution converges well overall. In such cases, the lift coefficient convergence provides a bet-
ter representation of the convergence history, as the residual norm plot is misleading. The residuals of the mean-flow and
turbulence model equations are shown separately. Normally the residual for the approximately factored algorithm does
not include any scaling. To provide a one-to-one comparison, we scale the residual vector before the norm is evaluated.

Two measures of computing time are reported. The first is the actual computing time (CPU time) on an Intel 2800 Pen-
tium 4 desktop computer with 1.5 gigabytes of memory. The second is the total computing time divided by the computing
time required for a single evaluation of the residual, including the mean-flow equations, numerical dissipation, turbulence
model and all boundary conditions, which we term ‘‘equivalent right-hand side (RHS) evaluations”. It is important to under-
stand that this measure is not a count of the actual number of residual evaluations; it is a normalization of the computing
time in an effort to reduce the dependence on the processor. Both of these measures of computational effort have their short-
comings. The CPU time is processor dependent and therefore hinders comparisons across platforms. It includes the efficiency
of both the spatial discretization and the iterative solver. The equivalent RHS evaluations measure enables comparisons
across platforms and algorithms and to an extent evaluates the efficiency of the iterative solver alone. However, it favors
an expensive spatial discretization because such a discretization increases the cost of a residual evaluation, which reduces
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Fig. 2. NACA 0012 airfoil at an angle of incidence of 6�, a Mach number of 0.15, and a Reynolds number of 9 million.
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the effective cost of the iterative method. The residual evaluation in the present work is relatively inexpensive, primarily due
to the use of a simple flux function. When performance measured in terms of equivalent RHS evaluations is compared with
solvers with more expensive spatial discretizations and hence residual evaluations, such as higher-order schemes on
unstructured grids or schemes with expensive flux functions and limiters, it is important to recognize this shortcoming of
the use of this measure. In the present case, both solvers compared require the same computing time for a residual evalu-
ation for a given flow problem, which varies roughly from 3� 10�6 to 4 � 10�6 s/grid node. The trip terms in the turbulence
model add about 10% to the cost of a residual evaluation.

The thesis of Chisholm [23] includes convergence results for subsonic and transonic inviscid flows over airfoils. For
meshes with roughly 12,000 nodes, the residual norm is reduced to 10�10 in roughly 7 s, and the lift coefficient converges
to four decimal places in 3–5 s. Here we will present results only for turbulent flows, both with and without the laminar-
turbulent trip terms in the turbulence model. Although we recommend the use of the trip terms in order to ensure that tran-
sition occurs where expected, many researchers do not include them, and convergence is somewhat faster when they are
excluded. All of the results presented use the matrix dissipation model; results obtained using scalar dissipation are shown
in Chisholm [23].

Fig. 2 shows convergence histories for the flow over the NACA 0012 airfoil at an angle of incidence of 6�, a Mach number of
0.15, and a Reynolds number of 9 million. The grid has 17,385 nodes, with an off-wall spacing of 10�6 chords and a maximum
cell aspect ratio of 13,672. Unless otherwise indicated, grids have been generated by an elliptic grid generator that allows
significant user control. Grid lines emanating from the trailing edge have been flared to keep cell aspect ratios moderate.
With the trip terms present, the JFNK algorithm reduces the residual ten orders of magnitude in roughly 60 s, or well under
1000 equivalent RHS evaluations. The lift coefficient converges to four figures in approximately 50 s, or 700 equivalent RHS
evaluations. After 100 s, or 1400 equivalent RHS evaluations, the approximate factorization algorithm has reduced the resid-
ual by two orders of magnitude and converged the lift coefficient to two figures. Note that the approximate factorization
algorithm converges to machine zero, but only a portion of the convergence history is shown. Without the trip terms, the
JFNK algorithm converges 30–50% faster, while the effect on the approximate factorization algorithm is smaller. One aspect
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Fig. 3. RAE 2822 airfoil at an angle of incidence of 2.31�, a Mach number of 0.729, and a Reynolds number of 6.5 million.
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of this particular flow is the Mach number, which is relatively low for a compressible flow solver without low Mach number
preconditioning. The increased stiffness associated with the low Mach number appears to be having a greater adverse effect
on the approximate factorization solver than on the JFNK solver.

Fig. 3 shows the performance of the JFNK algorithm for a transonic flow over the RAE 2822 airfoil at an angle of incidence
of 2.31�, a Mach number of 0.729, and a Reynolds number of 6.5 million. The grid has 17,385 nodes, with an off-wall spacing
of 2� 10�6 chords and a maximum cell aspect ratio of 8483. The performance of the JFNK algorithm is roughly the same as
for the subsonic flow above, while the approximate factorization algorithm is more effective. Note that the spikes in the
approximate factorization lift coefficient convergence history are not significant, as they simply indicate that the lift coeffi-
cient has passed through the converged value. This example demonstrates that the globalization strategy presented is capa-
ble of handling the strong nonlinearities associated with shock waves in transonic flows.

Fig. 4 shows convergence histories for a two-element configuration (main airfoil and flap deflected 20�) studied experi-
mentally by van den Berg [40]. The angle of incidence is 6�, the Mach number is 0.3, and the Reynolds number is 2.51 million.
The multi-block grid has 44,059 nodes, an off-wall spacing of 10�6 chords, and a maximum cell aspect ratio of 510,577. The
JFNK solver initially converges quite slowly, but eventually converges 10 orders of magnitude in under 5 min or 2000 equiv-
alent RHS evaluations, with the trip terms present. The lift coefficient converges to four figures in about 200 s, or 1500 equiv-
alent RHS evaluations. Together with Fig. 3, this figure shows that the JFNK algorithm is particularly advantageous when
deep convergence is needed.

The results presented thus far provide examples of the efficiency and reliability of the present JFNK algorithm in the solu-
tion of complex turbulent aerodynamic flows. In particular, the reliability of the algorithm stems primarily from the glob-
alization strategies developed. The phase of the convergence history during which globalization is important can
consume a large portion of the overall computing time. This makes the JFNK algorithm particularly well-suited to applica-
tions where the globalization phase can be reduced or avoided. For example, in aerodynamic shape optimization, the shape
changes from one iteration to the next are often small. Hence the flow solver can be warm started from the previous solution,
thereby shortening the globalization phase. Similarly, when a JFNK solver is used to solve the nonlinear problem arising at
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Fig. 4. Two-element configuration at an angle of incidence of 6�, a Mach number of 0.3, and a Reynolds number of 2.51 million.
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each time step of an implicit time-marching method in a time-accurate simulation of an unsteady flow, the initial guess at
each time step can lie within the radius of convergence of Newton’s method, and the globalization phase can be avoided or
reduced.

Next, results are presented for some particularly difficult cases which further demonstrate the effectiveness of the JFNK
algorithm. First we repeat the flow problem shown in Fig. 2 with a grid generated by a hyperbolic grid generator. As shown in
Fig. 5, the grid lines emanating from the trailing edge cannot be flared as with the elliptic grid generator; hence the cell as-
pect ratios are greatly increased, with a maximum of over 2 million. Convergence histories are displayed in Fig. 6. The per-
formance of the JFNK algorithm is almost unaffected relative to that shown in Fig. 2. The performance of the approximate
factorization algorithm is also unaffected initially, but its convergence slows significantly later on in the convergence history.
It is likely that an algorithm based on explicit multi-stage time stepping would converge very slowly on a grid that includes
cells with such high aspect ratios.

For the results presented in Fig. 4, the blunt trailing edges of the two elements were closed by rotating the two surfaces, as
is common practice. Fig. 7 shows the convergence of the lift coefficient with the blunt trailing edges retained. The grid has a
long thin block behind each trailing edge, leading to a large number of cells with high aspect ratios; the maximum cell aspect
ratio is over a half million. The JFNK algorithm converges somewhat more slowly, especially with the trip terms present, but
it is able to converge to a steady solution, while the approximate factorization algorithm does not. Residual histories are not
shown, as the turbulence model residual stalls early on at a limited number of points with the approximate factorization
algorithm, so the residual is not a good measure of convergence. As the two solvers have identical spatial discretizations,
a fully coupled turbulence model appears to be an important aspect of achieving convergence for such flows.
Fig. 5. Elliptic and hyperbolic grids for results shown in Figs. 2 and 6.
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Finally, we show convergence results for a particularly challenging flow problem, the flow over a three-element config-
uration, an airfoil with slat and flap investigated experimentally by Moir [41]. The configuration is at an angle of incidence of
20.18�, the Mach number is 0.197, and the Reynolds number is 3.52 million. This angle of incidence is close to maximum lift,
and there are large regions of separation in the coves of the slat and main element. The grid has 71,868 nodes, with an off-
wall spacing of 10�6 chords and a maximum cell aspect ratio of 18,434. Fig. 8 shows that the JFNK algorithm takes some time
to reach the point where it can converge rapidly, especially with the trip terms present, indicating that this flow is a severe
test of the globalization strategies. It converges quite rapidly without the trip terms, suggesting that some work should be
done to develop trip terms that are not so problematic.

6. Diagnosing problems in a JFNK algorithm

This section is included to aid those readers who are developing JFNK solvers that are similar to ours but involve some
significant differences. For example, the physics, the spatial discretization, or the turbulence model might be different.
Therefore, although many of the ideas and techniques introduced in this paper are relevant, they may need to be modified
in order to apply to the specific details of the solver under development. We will assume during this discussion that all ele-
ments of the residual evaluation, including the spatial discretization and the boundary conditions, have been correctly coded.

The obvious symptom of a problem is typically a failure to decrease the nonlinear residual, a large increase in the non-
linear residual, or the appearance of an unphysical quantity, such as a negative pressure, after a nonlinear update. The first
step in diagnosing the problem is to identify whether it lies with the linear solver or the nonlinear solver. Difficulties with the
linear solver include preconditioner failure, Jacobian-free breakdown, and scaling problems. Failure of the nonlinear portion
of the solver is usually associated with globalization.

If the linear solution is unable to meet the required convergence tolerance, then the problem lies with the linear solver.
However, successful convergence of the linear solution does not prove that the difficulty lies with the nonlinear component.
If Jacobian-free breakdown or scaling problems are occurring, the linear solver may appear to converge well, but the non-
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Fig. 6. Hyperbolic grid results.
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linear iterations diverge. Under these circumstances, it is important to recognize that the linear solver is the cause of the
problem. In order to diagnose scaling problems, the first step is to calculate the linear residual reduction for each equation
separately. The residual norm for each equation should be reduced by the desired factor. If not, then there is likely a problem
with the scaling of the equations. If this test is passed, then one must examine the residual reduction on a node by node
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basis. If the residual at some nodes is not being reduced, this indicates a scaling problem that is spatially dependent (such as
the J�1 scaling we discussed previously).

In order to diagnose Jacobian-free breakdown, one can form the Jacobian matrix explicitly, either by hand or through a
series of finite-difference or complex-step [43–45] approximations. The linear residual computed using the Jacobian-free for-
mula can be compared with that computed using the Jacobian matrix. If they disagree, then Jacobian-free breakdown has
occurred and consideration should be given to increasing d in Eq. (19). Forming the Jacobian matrix explicitly can be time
consuming, and it may be worthwhile to examine the impact of varying d first. Large values of d can be combined with a
higher-order difference formula in computing the matrix–vector product. If this solves the problem, then this identifies Jaco-
bian-free breakdown as the cause of the convergence problem.

Returning to a failure of the linear system to converge, preconditioner breakdown caused by small pivots or unstable LU
solves should be considered. Two statistics can be helpful in identifying this. The first is simply the size of the reciprocal of
the smallest pivot. If it approaches the reciprocal of machine zero, then this is the likely problem. The second is a condition
number estimate given by kðLUÞ�1ek1, where e ¼ ð1; . . . ;1ÞT [42], which gives an indication of the stability of the triangular
solves. Increasing r in Eq. (10) can help to alleviate either of these difficulties. The preconditioner can also be inadequate if
the approximate Jacobian matrix upon which it is based is too different from the true Jacobian matrix. This is often indicated
if increasing fill is not helpful. In this case, some of the approximations made in the approximate Jacobian must be reeval-
uated. If preconditioner breakdown and an inadequate approximate Jacobian can be ruled out, then the level of fill may need
to be increased. Finally, the reordering can have an important effect on the effectiveness of the preconditioner, and a poor
ordering must be considered as a possible cause of preconditioning problems manifested by poor convergence of the linear
iterations.

If the linear system converges well, and both scaling problems and Jacobian-free breakdown can be ruled out, then an
improved globalization strategy is required. In order to develop such a strategy, the following steps can be helpful. First,
solve the problem with a tight linear tolerance and a very small reference time step in order to establish the maximum stable
initial reference time step. Then determine when a full Newton step can be taken by experimenting with initiating the New-
ton step at various stages in the convergence history. Next, establish how the time step can be effectively ramped from the
required initial time step to the Newton stage. Finally, repeat while loosening the linear tolerance.

7. Conclusions

An efficient and reliable JFNK algorithm for turbulent aerodynamic flows has been presented. In the process, several
important aspects of JFNK algorithms have been elucidated, and measures for addressing them have been described. The per-
formance of the algorithm is demonstrated for a wide ranging suite of flow problems to be highly competitive with popular
algorithms for computing turbulent aerodynamic flows. Hence the JFNK algorithm merits serious consideration as the algo-
rithm of choice for this application.
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